鉅大LARGE | 點擊量:750次 | 2019年12月26日
開關電源的測量中安全性解決方案
前言
電源幾乎對于每種外接電源的電子產品都必不可少,開關電源系統(SMPS)已成為數字計算、網絡、通信系統中的主流結構。開關電源的性能(或者故障)就可能對一個昂貴的大型系統產生重要影響。
要確保即將實現的SMPS設計可靠性、穩定性、兼容性、安全性,測量是唯一的辦法。SMPS測量分為三個主要部分:有源器件測量、無源器件測量(主要是磁性元件)以及電源質量測試。有些測量可能要面對浮動電壓和強電流;有些測量需要大量數學分析,才能得到有意義的結果。電源測量可能很復雜,特別是開關電源系統測量中安全技術為引人注目什么吶?應先從當今開關電源(SMPS)技術發展趨勢與開關電源沒計中的挑戰說起。
開關電源技術發展趨勢的特點是:效率越來越高;功率密度越來越高;瞬時負荷;低電躍,高電流;寬帶供電技術及符合EN6100003-4A14標準。
開關電源沒計中面對提升開關電源效率,降低開關損耗;最大限度地降低磁性器件的功率損耗;需要更快的控制環路響應。必須提高開關電源系統可靠性,要有海量數據分析并符合寬帶技術標準;需要簡便易用、可靠的工具,以及定位問題。
開關電源系統
大多數現代系統中主流的直流電源體系結構是開關電源系統,因為它能夠有效地應對變化負載。典型SMPS的電能信號通路包括無源器件、有源器件和磁性元件。SMPS盡可能少地使用損耗性元器件(如電阻和線性晶體管),而主要使用(理想情況下)無損耗的元器件:開關晶體管、電容和磁性元件。
SMPS設備有一個控制部分,其中包括脈寬調節器、脈頻調節器以及反饋環路等。控制部分可能有自己的電源。圖1是簡化的SMPS示意圖,圖中顯示了電能轉換部分,包括有源器件、無源器件以及磁性元件。
SMPS技術使用了金屬氧化物場效應晶體管(MOSFET)與絕緣柵雙極晶體管(IGBT)等功率半導體開關器件。這些器件開關時間短,能承受不穩定的電壓尖峰。同樣重要的是,它們不論在開通還是斷開狀態,消耗的能量都極少,效率高而發熱低。開關器件在很大程度上決定了SMPS的總體性能。對開關器件的主要測量包括:開關損耗、平均功率損耗、安全工作區等。
開關電源系統的安全測量
工業電源的安全測量應包括:測量高電壓和高電流,測量三相電電路,處理浮動設備或具有不同接地的沒備,檢定數字控制電路,檢定功率電子器件的瞬時功率分析、波形分析、相位角及開關損耗等均應符合行業標準和法定標準。
為什么不能使用傳統示波器測量
以交流供電的傳統示波器是以地為參考點的測量,其含義是:交流供電的示波器必須與地線相接,探頭的地線與示波器所有通道的參考點相連,從而接到地電位。而傳統交流供電示波器差分浮地測量危險!
我們測量的Vc-d=(Va-b+V地環路電壓)-V地環路電壓(共模)。
通過用切斷標準三頭AC插座地線的方法或使用一個交流隔離變壓器,切斷中線與地線的連接。將示波器從保護地線浮動起來,以減小地環路的影響。這種方法其實并可行,因為在建筑物的布線中其中線也許在某處已經與地線相連。是不安全的測量方法,會帶來人身傷害和儀器和電路損壞!
不能使用傳統示波器測量技術的原因如下:
·分布電容和電感降對待測點帶來超過100pf的感性負載,可能造成電路損壞!
故不可用剪斷示波器接地線的方法迸行差分測量!也不可使用隔離變壓器進行差分測量!
·分布電容和電感還可能帶來原本沒有的振鈴!見圖2(a)所示。
·示波器在沒有接地的情況下,其電磁兼容特性降達不到設計要求,可能干擾待測電路或受到空間電磁波的干擾,影響測量結果!
大多數示波器的信號公共線終端與保護性接地系統相連接,通常稱之為接地。這樣做的結果是:所有施加到示波器上,以及由示波器提供的信號都具有一個公共的連接點。該公用連接點通常是示波器機殼,通過使交流電源設備電源線中的第三根導線接地線,并將探頭地線連到一個測試點上。這是一種不安全的測量行為。此行為會將儀器底盤(不再接地)的電壓提高為與探頭地線相連的測試點電壓相同。觸摸儀器的用戶就會成為接地的最短路徑。圖2(b)說明了這種危險的情況。
圖2b示波器底盤上出現危險電壓的浮動測量
圖2b中的V1是高于真實接地電壓的偏置電壓,而VMeas是待測電壓。根據被測單元(DUT)的不同,V1可能為數百伏,而VMeas則可能為幾分之一伏。以此方式浮動機殼接地端會對用戶、DUT和儀器構成威脅。
此外,它違反了工業健康和安全規定,且獲得的測量結果也差。而且交流供電儀器在地面浮動時會出現一個大的寄生電容。因此,浮動測量將受到振蕩性的破壞,即圖2(a)所示的振鈴出現。
浮動測量新方法的引入
所謂浮動測量,即測量的兩個點都不處于接地電位,該測量也常稱為差分測量。
信號公共線與地之間的電壓可能會升高到數百伏。浮動參考接地的示波器是通過使接地系統無效或使用隔離變壓器,將信號公共線從地面斷開。為此需要通過具有內置隔離通道技術的TPS2000系列示波器,使得工程師和技術人員可以快速、準確、經濟地進行多通道隔離測量。
因為浮動測量技術使機殼、機柜和連接器等儀器可接觸部件具有探頭地線連接點的電勢,而該技術是危險的,不僅是因為它升高了示波器上存在的電壓(操作人員可能會遭到電擊),還因為它向示波器的電源變壓器絕緣體上累積了應力,雖然該應力不會立即引發故障,但是可能在將來引發危險的故障(電擊和火災),即使將示波器恢復至正常地接地操作也無法挽回。這就有可能造成不僅浮動參照接地的示波器很危險,而且會使測量方法不準確,即該電勢的誤差是由于在地線連接點處直接將示波器機殼的總電容與被測電路相連所致。于是又需采用安全放在第一位的隔離通道(LsoIatedChanneI)技術作為解決方案。
隔離通道技術
在當今使用的寬帶示波器系統中,最常用的隔離方法是雙路方法,將輸入信號分為兩個信號:低頻和高頻。該方法需要每個輸入通道都具有昂貴的光耦合器和寬帶線性變壓器。
使用創新的隔音技術,取消了雙路方法,而對每個從直流到示波器帶寬的輸入通道僅使用一個寬帶信號通路。通過該技術,可以提供第一批具有四個輸入(1solatedChannel)、低成本并使用電池供電的示波器,該電池可供示波器連續工作八個小時。對于需要進行四通道隔離測量,并希望獲得由低成本并使用電池供電的示波器提供的性能和易用性的工程師和技術人員來講,選擇內置有隔離通道技術的TPS2000系列示波器是理想工具。
圖3說明了隔離通道的概念。
圖3將安全放在第一位的IsolatedChannel技術,可以快速、準確、經濟地進行多通道隔離測量
四隔離通道輸入體系結構向正輸入和負基準導線(包括外部觸發輸入)提供了真實且完整的通道間隔離。
電源控制電路(例如電機控制器、不間斷電源和工業設備)中的浮動測量要求最為嚴格。在這些應用領域中,電壓和電流可能大到足夠對用戶和測試設備造成威脅。
要保證測量質量,隔離通道技術是首選解決方案,并且該技術始終將安全放在第一位。如果存在較大的共模信號,能有效的通道與通道隔離將寄生效應的影響降到最低,測量系統的容量越小,那么它與環境的交互影響也就越小。完全隔離的電池供電儀器本身并不涉及接地問題。每個探頭都具有一條與儀器底盤隔離的負基準導線,而不是使用一條固定的地線。
而且,所有輸入通道的負基準導線都彼此隔離。這是避免短路危險的最佳方法。它還在最大程度上降低了信號弱化阻抗,而該阻抗會影響單點接地儀器中的測量質量。
無論使用電池電源還是通過交流電源適配器連接到交流電源,TPS2000系列示波器的輸入始終是浮動的。因此,這些示波器與傳統示波器所體現的限制并不相同。傳統示波器側重于性能(帶寬,多功能性),犧牲了進行浮動測量的能力。
電源質量測量
根據SMPS組成,它的測量可分有源器件(開關元件)測量、元源器件(磁性元件)測量、輸入交流供電測量及電源質量測量,值此僅對電源質量測量作介紹。
電源質量不僅僅取決于發電機。它還取決于電源的設計和制造以及最終用戶負載。電源的電源質量特征定義了電源的健康狀況。
現實的電線從來不會提供理想的正弦波,線路上總是有一些失真和雜波。開關電源給供電電源施加了一個非線性負載。因此,電壓和電流波形不是完全相同的。電流在輸入周期的某一部分被吸收,使輸入電流波形上產生諧波。確定這些失真的影響是電源工程的一個重要部分。
為了確定電源線上的功率消耗和失真,應該在輸入階段進行電源質量測量,如圖4為所示的電壓和電流測試點。
圖4開關電源電源質量測試點示意圖,電源質量測試必須使用同一時刻的輸入VAC和IAC讀數
電源質量測量包括:有功功率;視在功率或無功功率;功率因數;波峰因數;根據EN61000-3-2標準進行的電流諧波測量;總諧波失真(THD)。
結語
專業技術人員要面對SMPS高壓和電流測量,必須解決測量中的安全性問題,即運行于具有潛在危險的浮動測量。對此,當今有多種可選技術或產品進行浮動測量,值此僅以內置具有IsoatedChanneI技術的TPS2000寬帶示波器為例作為解決方案,即隔離和浮動測量功能+實驗室示波器的性能+現埸通用+功率專用測量和分析,等于高的生產效率,那就是浮動測量新方法的應用,其特點是具有多功能性、準確性或經濟性。
上一篇:LED驅動設計中如何減小輸出紋波
下一篇:單片機的數控開關電源設計方案
-
電源幾乎對于每種外接電源的電子產品都必不可少,開關電源系統(SMPS)已成為數字計算、網絡、通信系統中的主流結構。開關電源的性能(或者故障)就可能對一個昂貴的大型系統產生重要影響。
-
2020-05-29
-
2020-05-14
-
2019-04-13
-
2019-01-07
-
2018-06-21
-
鋰電池的應用廣泛,從民用的數碼、通信產品到工業設備到特種設備等都在批量使用,不同產品需要不同的電壓和容量,因此鋰離子電池串聯和并聯使用情況很多,鋰電池通過加裝保護電路、外殼、輸出而形成的應用電池稱為P
-
2018-03-13
-
2018-03-13
-
2020-08-31
-
2020-10-26
-
2020-11-03
鉅大核心技術能力
- 磷酸鐵鋰電池低溫 |
- 特種筆記本電池 |
- 12v磷酸鐵鋰電池 |
- 48v磷酸鐵鋰電池 |
- 36v磷酸鐵鋰電池 |
- 24v磷酸鐵鋰電池 |
- 36V動力鋰電池 |
- 48V動力鋰電池 |
- 激光設備鋰電池 |
- 電力電池 |
- 無人船鋰電池 |
- 鋰電池 |
- 18650電池 |
- 鋰離子電池 |
- 18650鋰電池 |
- 動力電池 |
- 儲能電池 |
- 磷酸鐵鋰電池 |
- 聚合物電池 |
- 12v鋰電池 |
- 24v鋰電池 |
- 36v鋰電池 |
- 48V鋰電池 |
- 防爆電池 |
- 低溫電池 |
- 耐低溫電池 |
- 充電電池 |
- 72v鋰電池 |
- 軟包電池 |
- 特種電源 |
- 醫療鋰電池 |
- 智能鋰電池 |
- 低溫18650電池 |
- 低溫充電鋰電池 |
- 高溫鋰電池 |
- 高倍率鋰電池 |
- 高低溫鋰電池 |
- 儲能電源 |
- 備用電池 |
- 三元鋰電池 |
- 動力鋰電池 |
- 鈦酸鋰電池 |
-
2024-12-04
-
2024-12-04
-
2024-12-04
-
2024-12-04
-
2024-12-04
-
2024-12-04
-
2024-12-04
-
2024-12-04
-
2024-12-04
-
2024-11-27
-
2024-11-27
-
2024-11-27