鉅大LARGE | 點擊量:2660次 | 2019年01月02日
電池固態電解質的室溫電導率難題
在現階段,電動汽車社會的主要矛盾已轉化為人民群眾日益增長的續航里程與動力電池落后的能量密度之間的矛盾。
而人民對美好生活的向往,正是整個產業從業者們的奮斗目標。為此,在《節能與新能源汽車技術路線圖》中,我國特別提出了2020年動力電池的能量密度達到300Wh/kg,2025年400Wh/kg,2030年500Wh/kg的目標。在工信部頒布的《中國制造2025》中,這一目標甚至提高到了2025年400Wh/kg,2030年500Wh/kg。
顯然,不管是哪一個,這些技術指標都已極其接近和突破了當下電化學體系內的鋰離子電池的天花板了。
鋰電池業界普遍認為三元鋰電池技術路線的比能量密度上限是350Wh/kg。全球范圍內來看,鋰電產業發達的幾個國家中,日本科學家判斷可規模量產化的鋰離子電池的比能量密度上限是300Wh/kg,我國和美國則把這個上限提高到了350Wh/kg。
三元體系內,全球諸國都把賭注押在高鎳三元+硅碳負極材料的引入上。不過即使做到了松下21700圓柱電池的鎳鈷鋁摩爾比達到變態的0.9:0.5:0.5的極限,單體電芯的比能量也就最高做到300Wh/kg,上下不超過20Wh/kg的水平了。
而隨著能量密度的不斷提升,鋰電池的安全隱患也像揮之不去的魔咒一樣緊隨而來,新聞上被曝出的各種電動車電池起火爆炸的事故更是此起彼伏。
面對市場和人民對超越300Wh/kg的殷殷期盼,現有的材料體系表示力不從心,恐怕要讓群眾們失望了。
所以業界公認,未來要實現350Wh/kg以上,就要走另一條技術路線了。目前看來,下一個能堪當此大任的就是固態電池了。
基于此,固態電池被看成動力電池的下一個風口。全球范圍內不管是在傳統鋰電領域已經站穩腳跟的中日韓三國,還是手里握著多項電池核心技術專利的美國,甚至連已經在當下競爭格局中敗下陣來的歐洲諸國,都試圖占領下一個固態電池的戰略高地。于是乎,包括多家科研院所、頂級學府、車企巨頭、科技公司在內數十家機構在大量涌入的資本和政策支持下,展開了一場跟時間賽跑的爭奪戰。
未來,致勝電動汽車時代的關鍵,是掌握動力電池的主動權。所以在這份不斷壯大的名單中,目前已經出現了豐田、大眾、寶馬、現代、三菱、蘋果、松下、三星和戴森。在中國,有中科院、清華大學、寧德時代、清陶發展、贛鋒鋰業、珈偉股份等。
11月19日,清陶對外宣布,其建成的全國首條固態鋰電池產線已經正式投產。
更早之前,贛鋒鋰業布局的固態電池生產線號稱已經開始中試。
更更早之前,已在這個領域投入多年心血的豐田將固態電池的商業化時間一再提前,從2030年提前到2022年,直至最新的2020年。
更更更早之前,法國Bollore公司在英國倫敦投放了3500輛搭載固態電池的共享電動汽車。
看起來,好像固態電池的美好未來已經近在咫尺,仿佛明天就能到來。
固態電解質的室溫電導率難題。
電解質的功能就是在電池充放電過程中為鋰離子在正負極之間移動搭建通道,決定鋰離子傳輸順暢與否的指標就是離子電導率,離子電導率的高低直接影響了電池的整體阻抗和倍率性能。而不幸的是,無論是哪種材質的固態電解質,離子電導率都普遍偏低,其中硫化物電解質的電導率相對較高,也只是限于和最差的聚合物電解質的對比。
聚合物電解質的導電率差到哪種地步呢?在室溫25度下,聚合物電解質的電導率要低于常規液態電解質5個數量級,到60度時,依然差著2個數量級,到120度的時候依舊有1個量級的差距。
舉個例子,假設用這樣的一塊聚合物固態電池裝在你的手機里,你能想象你的手機內部溫度高達近100度嗎?
再以法國Bollore公司為例,為了保證他們家采用聚合物固態電池的電動汽車能夠正常運行,法國人甚至還專門為每輛汽車上搭配了一個加熱元器件,每次啟動車輛之前都要將電池加熱到80度,因為只有溫度升高后,電池的導電性才能變好。
升高電池溫度這一過程不僅麻煩,而且會消耗能量,導致電池Pack的有效能量密度顯著下降,同時由于聚合物固態電池的功率性能較差,所以在實際使用時,還需要和大功率的超級電容器配合使用。
更要命的是,通常這種聚合物固態電解質的電化學穩定窗口都比較窄(一般在4V以下),對應的正極材料選擇只能是磷酸鐵鋰、鈷酸鋰或者三元NCM111,使其總體能量密度很難達到300Wh/kg。例如法國Bollore公司的聚合物電池,雖然號稱是固態電池,但其比能量卻只有100Wh/kg。
由于固態電解質電導率總體低于液態電解質,這就導致了目前固態電池的內阻過大,倍率性能整體偏低,所以固態電池暫時也就告別快充了(聚合物固態電池充滿電需要5個多小時)。業界人士表示,固態電池導電率要維持在在適當的水平,不能過高,也不能過低,“這樣的材料非常難開發”。
所以,電導率的問題成為另一大阻礙固態電池商業化應用的瓶頸之一。
固態電解質和正負極的界面匹配問題。
雖然固態電解質與正負極材料界面基本不存在像液態電解質分解那樣的副反應,但電解質由液態換成固體之后的弊端也是顯而易見的。鋰電池體系由電極材料-電解液的固液界面向電極材料-固態電解質的固固界面轉化過程中,就必然存在著由于固固之間無潤濕性(傳統鋰電池的電解液和正負極有很好的浸潤性,可以達到你中有我我中有你的和諧境界),“硬碰硬”的直接結果就是電解質和正負極界面相容性不佳,界面接觸電阻變大,從而嚴重影響了鋰離子在界面之間的傳輸。
電解質和正負極之間的界面相容性,直接決定了界面反應電阻和電池循環穩定性等諸多性能。試驗數據證明,目前固體電解質與正負極之間的界面接觸阻抗值是電解質本體阻抗的10倍以上,這直接導致一系列惡果:固態電池的內阻急劇增大、電池循環性能變差、循環壽命變短、倍率性能變差。
固體電解質和正負極直接的界面匹配問題,界面阻抗大是制約固態電池循環性能的最重要瓶頸之一。
上一篇:長遠鋰科萬噸正極材料項目年內建廠
下一篇:韓國SK鋰電正極材料項目落戶重慶