鉅大LARGE | 點擊量:3976次 | 2019年12月25日
為什么鋰離子電池在低溫下性能差?如何解決這種問題?
目前,研究者們對造成鋰離子電池低溫性能差的主要因素尚有爭論,但究其原因有以下3個方面的因素:
1.低溫下電解液的粘度增大,電導率降低;
2.電解液/電極界面膜阻抗和電荷轉移阻抗增大;
3.鋰離子在活性物質本體中的遷移速率降低.由此造成低溫下電極極化加劇,充放電容量減小。
另外,低溫充電過程中尤其是低溫大倍率充電時,負極將出現鋰金屬析出與沉積,沉積的金屬鋰易與電解液發生不可逆反應消耗大量的電解液,同時使SEI膜厚度進一步增加,導致電池負極表面膜的阻抗進一步增大,電池極化再次增強,最將會極大破壞電池的低溫性能、循環壽命及安全性能。
改善正極材料在低溫下離子擴散性能的主流方式有:
1采用導電性優異的材料對活性物質本體進行表面包覆的方法提升正極材料界面的電導率,降低界面阻抗,同時減少正極材料和電解液的副反應,穩定材料結構。
Rui等采用循環伏安和交流阻抗法對碳包覆的LiFePO4的低溫性能進行了研究,發現隨著溫度的降低其放電容量逐漸降低,-20°C時容量僅為常溫容量的33%。作者認為隨著溫度降低,電池中電荷轉移阻抗和韋伯阻抗逐漸變大,CV曲線中的氧化還原電位的差值增大,這表明在低溫下鋰離子在材料中的擴散減慢,電池的法拉第反應動力學速率減弱造成極化明顯增大(圖1)。
Lv等設計合成了一種快離子導體包覆鎳鈷錳酸鋰的復合正極材料,該復合材料顯示出優越的低溫性能和倍率性能,在-20°C仍保持127.7mAh·g-1的可逆容量,遠優于鎳鈷錳酸鋰材料86.4mAh·g-1。通過引入具有優異離子電導率的快離子導體來有效改善Li+擴散速率,為鋰離子電池低溫性能改善提供了新思路。
2通過Mn、Al、Cr、Mg、F等元素對材料本體進行體相摻雜,增加材料的層間距來提高Li+在本體中的擴散速率,降低Li+的擴散阻抗,進而提升電池的低溫性能。
Zeng等采用Mn摻雜制備碳包覆的LiFePO4正極材料,相比原始LiFePO4,其在不同溫度下的極化均有一定程度的減小,顯著提升材料低溫下的電化學性能。Li等對LiNi0.5Co0.2Mn0.3O2材料進行Al摻雜,發現Al增大了材料的層間距,降低了鋰離子在材料中的擴散阻抗,使其在低溫下的克容量大大提高。
磷酸鐵鋰正極材料在充電過程從磷酸鐵鋰相至磷酸鐵相間的相轉變比放電過程從磷酸鐵相至磷酸鐵鋰相間的相轉變更緩慢,而Cr摻雜可促進放電過程從磷酸鐵相至磷酸鐵鋰相間的相轉變,從而改善LiFePO4的倍率性能和低溫性能。
上一篇:更換鋰電池有哪些需要注意的事項?